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The HeImhoItz equation (d + K%?) tr=f with a variable index of refraction n and a 
suitable radiation condition at infinity serves as a model for a wide variety of wave 
propagation problems. Such problems can be solved numerically by first truncating the given 
unbounded domain, imposing a suitable outgoing radiation condition on an artificial boun- 
dary and then solving the resulting problem on the bounded domain by direct discretization 
(for example, using a finite element method). In practical applications, the mesh size h and the 
wave number K are not independent but are constrained by the accuracy of the desired com- 
putation. It will be shown that the number of points per wavelength, measured by (K/r-‘, is 
not sufficient to determine the accuracy of a given discretization. For example. the quantity 
K’h2 is shown to determine the accuracy in the Lz norm for a second-order discretization 
method applied to several propagation models. 0 I985 Academic Press, Inc 

The Helmholtz equation 

Au + K*n*u = 0 3 (1.1) 
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where K is the wave number and n(x) is the index of refraction, describes a wide 
variety of wave propagation phenomena through an inhomogeneous medium. 
Inhomogeneities are represented by spatial variations in n(x) and also by interfaces 
and scattering surfaces. Equation (1.1) is fundamental in acoustics, in particular, in 
underwater acoustics [7, 81, duct acoustics [2, 10, 121, and acoustical scattering 
[S]. In addition, certain models of electromagnetic and elastic wave propagation 
can be described by (1.1) [ll, 123. Vector formulations of (1.1) describe general 
electromagnetic and elastic wave propagation [lS]. Finally, the propagation of 
pulse-like waves can be reduced to an analysis of ( 1.1) after Fourier transforming 
the time variable Cl]. 

If the wave length I ( =2x/K) is small relative to the other length scales in the 
problem, solutions to (1.1) can be approximated by asymptotic methods. However, 
if A is of the same order as some characteristic length scale, these expansions can 
break down and the problem must be, in general, solved by numerical methods. 
The methods we are considering are based on truncating the domain in which the 
wave propagation is occurring and imposing a suitable outgoing radiation con- 
dition on an artificial boundary. The resulting problem is then solved on the boun- 
ded domain by directly discretizing (1.1). Such a method is described in [4], where 
an efficient technique to solve the resulting linear system of equations is also 
introduced. 

In general, radiation conditions do not completely absorb all reflections. The 
total error in the numerical solution of (1.1) is the sum of two errors: the error due 
to the approximate radiation condition and the discretization error due to the 
approximation of the continuous problem by a discrete problem. In this paper we 
will analyze only the discretization errors due to a standard finite element 
approximation scheme for (Ll), on a bounded domain with a suitable radiation 
condition. 

In any wave propagation problem there are at least three important and distinct 
length scales. These are 1, the diameter of the truncated computational region; a, the 
diameter of the region containing the inhomogeneities or other effects which distort 
free space wave propagation; and h, the mesh size. Since K has units (length)-‘, 
this gives three nondimensional quantities Ku, Kl, and Kh which relate these 
characteristic lengths to the wavelength. 

(K/z-’ is the number of grid points per wavelength (up to a constant factor) and 
has been used as a measure of accuracy by many authors (see, for example, 
[2, 7, 131 and the references contained therein). Ka is essentially the number of 
wavelengths in the inhomogeneous region and is a measure of the degree of distor- 
tion of the solution from free space wave propagation. KI is a measure of the num- 
ber of wavelengths in the computational domain. It depends on the effectiveness of 
the radiation boundary condition in simulating outgoing radiation and on the 
positions at which the solution is desired. In general, the computational domain is 
fixed and includes all the inhomogeneties. The wave number then varies over some 
range of physical interest. 

In this paper it will be established that Kh is not a sufficient indicator of the trun- 
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cation error of a discrete approximation to ( 1.1). The arguments, in general, will be 
given in the context of a finite element discretization, nevertheless we expect that 
similar results are valid for finite difference approximations. It will be shown that 
the discretization error depends on both KZ and Kh. Thus, when the computational 
domain is fixed, discretization errors will grow as K increases even though the num- 
ber of points per wavelength remains fixed. If a finite element method accurate to 
order m is used, an error bound of O(Ph”-i ) will be established for errors in the 
H’-norm. Furthermore, an error bound of 

O(F +‘+ahm) (1.2) 

will be established for errors in the L*-norm, where ~12 0 depends on both the 
geometry of the problem and the radiation condition. This estimate is suboptimal in 
the sense of approximation theory for the finite element subspace. We stress that 
this analysis is only for the discretization error and does not include the errors due 
to the approximation of the radiation condition at a linite boundary. 

Estimate (1.2), with ~1= 0, was used in [6] in discussing the usefulness of the 
multigrid method to solve the Helmholtz equation. In Section 2, (1.2) will be 
established rigorously in a fairly general setting. It will be shown that IX = 0 is the 
most favorable bound and is sharp for a one-dimensional model problem but that 
in general tl> 0. The results are obtained from a standard finite element error 
analysis combined with some nonstandard lemmas bounding the solution in term of 
the data and K. A reader only interested in the consequences of the theory can skip 
Section 2 and just read the precise statement of Theorem 2.2. Numerical results will 
be presented in Section 3 validating the theory in a waveguide geometry. In Sec- 
tion 4 several practical consequences of this theory will be discussed. 

2. ERROR ESTIMATES 

We now outline the theoretical results. We first consider the model problem 

[-A - (K2 + iSK)] u(x) =f(x), XEQ (2.la) 

au 
s=o, on asz, (2.lb) 

where 6 > 0, K> 0,&J is a bounded domain in RN (N = 1,2,3) with a smooth boun- 
dary K?, andf(x) smooth. 

Remark 2.1. The term SK is introduced so that (2.1) is a well-posed boundary 
value problem. In practical problems this is accomplished by the radiation boun- 
dary condition. 
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To approximate (2.1) we use a finite element method and introduce a variational 
formulation. Let 

a(u, Y) = i, [VU. VZ - (K2 + iSK) u(x) B(X)] dx 

and 

U ~1 = s, f(x) v(x) & 

then the weak form of (2.1) is 

all 0 E H’( 52), (2.2) 

where H’(Q) denotes the standard Sobolev space. Given a subspace Sh c H’(B) the 
finite element approximation is the function uh E Sh such that 

u(zP, u”) = (f, u”) for all uh E Sh. (2.2’) 

We assume that L2 functions can be approximated to order h” by elements of Sh. 
We can then prove the following theorem. 

THEOREM 2.1. Suppose that u satisfies (2.2) and u E H”(S2). Then there exists a 
unique solution uh of (2.2’) provided K2h is sufficiently small. Furthermore, the follow- 
ing estimates hold for the error eh = u - uh, 

llehllH1 < C,h'+'(l +~)Cl141L~+~,(f )I, (2.3a) 

lI~hlIL~~~,~m~~+~+‘~[:ll~llL~+~m~f~l~ (2.3b) 

where C,,, depends on m and Q but is independent of K and the dataf, y,,, is given by 

rm(f)= 

(2.4a) 

(2.4b) 

The sum in (2.4a) ranges over even indices while the sum in (2.4b) ranges over odd 
indices. 

The estimate (2.3b) shows that the L2 error (normalized by 11~1) + r,,,(f )) for a 
scheme of order m grows at least as fast as hmKm+ ‘. We shall later show that in 
some cases this rate of growth is sharp. For certain classes of data f we can also 
show that r,(f) ,< C, J(u/[~z, where C, is independent of K andJ: In these cases we 
have the estimate 

lIehIlL < C,(l + P+l) h” IbIlL (2.5) 

581/.59/3-4 



400 BAYLISS, GOLDSTEIN, AND TURKEL 

and so we have bound on the relative error \le”llL2/ lIu\l Lo. An example of such a 
class is data f which can be expanded in a sufficiently rapidly convergent series of 
eigenfunctions of -d in Q. 

A proof of Theorem 2.1 for the model problem (2.1) will be presented elsewhere. 
The proof depends on the finite element analysis of [16] together with elliptic 
estimates and the following bound of the solution in terms of the data 

(2.6) 

where C is independent of K and J For more general problems, (2.lb) is replaced 
by a radiation condition (which can be local or nonlocal, see, e.g., [3, S-121). The 
finite element analysis in [16] has been extended to problems with different 
radiation conditions [9, lo]. However, (2.6) is not true, in general, and the 
strongest bound that we can establish is 

Ml LA(Q) G -yy .” llfll L2(Q)> (2.7) 

where a>0 depends on the geometry, the dimension of the problem and the 
bound for the radiation condition. In such cases we can establish the following 

error eh: 

lIehIt L2(0) G Crn(~ +l+a+ ~~~“~ll~llL~~~)+Ym~f~~. 

A proof of these results will appear elsewhere. We next consider 
(2.7) for various problems with radiation boundary conditions. It 
that for the one-dimensional problem 

u(0) = 0, :(1)=&24(l), 

where f(x) vanishes near x = 1, (2.7) holds with a = 0. 

(2.9) 

We next consider the Helmholtz equation in a Cartesian waveguide. Let 0 = 
(x~[O,rc],y~[O,11]}, andletf=O near x = K, and consider the problem 

(2.8) 

the validity of 
can be shown 

(-d-K*)u(x,Y)=f(x,Y), b, Y)EQ, 

u(O, Y) = 0, u(x, n) = 0, UJk 0) = 0, %(X, Y) = W), 
(2.10) 

where Z’(U) is the global boundary operator for outgoing modes introduced in 
[S, lo]. In subdomains where f = 0, the solution to (2.9) can be expressed as a sum 
of modes 

u = f A,q,(y) e+, 
j=O 

(2.11) 
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where 

4jt.Y) = cos(G+ 4) YIP 

Oj=JI. 

For K2 - (j+ $)’ > 0, the jth mode is propagating and outgoing. For 
K2 - (j + t)’ < 0, the jth mode decays exponentially and is called evanescent. The 
values {j + if are called cutoff frequencies. When K equals a cutoff frequency the 
problem is not well posed. 

We can show that (2.7) holds for (2.10) with a = t provided K is uniformly boun- 
ded away from a cutoff frequency. Furthermore (2.7) holds with a=0 when the 
solution consists of a finite number of modes. Numerical results for a problem 
similar to (2.10) will be presented in Section 3. Extensions of these results to 
exterior problems will appear elsewhere. 

For m =2, the L2 estimate with a =0 shows that as K increases, the L2 error 
grows at a rate 0(K3h2). To show that this growth rate is sharp we consider the dif- 
ference equation in one dimension 

uj+ 1 - 2uj + uj- l + K2h2uj = 0, 

as a second-order approximation to the equation 

u, + K2u = 0. 

(2.12) 

(2.13) 

Equation (2.12) corresponds to discretizing (2.13) with piecewise linear elements 
and lumping the mass matrix (i.e., the terms involving K2 in the bilinear form). It 
can be seen that the argument below is also valid without lumping. 

Solutions to (2.12) are of the form 

uj = eWh = ei.q; xi= jh, 

where 

zh = _+Kh[l + U((Kh)2)]. (2.14) 

If we wish to approximate the outgoing solution (as x + +co), the ( + ) sign must 
be chosen in (2.14) and the approximate solution is 

uj=eizjh=e X.x,(1 + O((Kh)2)) 

Therefore, the error ej is 

ej = eiK~j[eixjO(@Q) _ 11 
9 

and if we consider a fixed region in x and assume K3h2 small, we obtain 

lleillL~/Il~llr~ = WK3h2). 
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3. NUMERICAL RESULTS 

To numerically validate the theory presented in Section 2, we consider a model 
problem 

u, + uyy + K2u = 0, o<x<7c,o< y<n, (3.1) 

with boundary conditions 

uy(x, 0) = 24(x, n) = 0, 

%(O> Y) =f(y), 

&(7-b Y) = T(u), 

where the boundary operator T will be described below. We consider three exam- 
ples In example 1, f(y) is chosen so that the exact solution is 

u(x, y) = @=qOS ;, 

and T(u) = i&f%% u. In examples 2 and 3, f is chosen so that the exact 
solution is 

t4 = t ei’jx cos((j + $) y); ii = JzqTp, 
j=O 

where M = 4 for example 2 and M = 7 for example 3. The boundary operator is the 
global operator T(u) referred to earlier which was introduced in [S J for an 
underwater acoustics propagation model. When lj is real, the jth mode in the 
solution has no decay in x and is called a propagating mode. When lj is imaginary, 
the jth mode decays in x and is called evanescent. 

A square N x N grid is used and the equations are solved by the preconditioned 
conjugate gradient method described in [4]. Piecewise linear elements with lump- 
ing are used. Normalized L, errors for the examples are shown in Table I-III for 
different values of K and N. 

K 

TABLE 1 

Results for Example 1 

N Error Kh K3hZ 

4.16 65 0.0120 0.204 0.173 
5.45 97 0.0137 0.178 0.173 
6.60 129 0.0147 0.162 0.173 
6.24 97 0.0182 0.204 0.260 
8.32 129 0.0252 0.204 0.347 
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TABLE II 

Results for Example 2 

K N Error Kh K3h2 

4.16 65 0.0133 0.204 0.173 
5.45 97 0.0120 0.178 0.173 
6.60 129 0.0114 0.162 0.173 
6.24 97 0.0165 0.204 0.260 
8.32 129 0.0227 0.204 0.347 

In Tables I and II the first three entries correspond to K3h2 fixed while the first 
and last two entries correspond to K/r fixed. It is clear from the tables that the 
errors grow almost linearly in K for Kh fixed and are nearly constant for K3h2 fixed. 
In these examples, K is uniformly bounded away from the cutoff frequencies and the 
estimate (2.5) is confirmed numerically. (We have observed that this scaling of the 
error does break down as K and N are decreased. This is to be expected from the 
estimate (2.5) as K approaches 0.) 

In Table III the first two entries correspond to K3h2 fixed and the first, third, and 
fourth entries correspond to Kh fixed. For these entries, K is not close to a cutoff 
frequency and the estimate (2.5) is again confirmed. The last three entries contain 
values of K very near a cutoff frequency. In these cases the errors do not scale as 
predicted and are in fact considerably worse. This is because the constant depends 
on how close K is to a cutoff frequency. The errors that would be observed in prac- 
tice depend on the sequence of K values, how close they are to cutoff frequencies, 
and whether the modes close to cutoff are propagating or evanescent. 

4. IMPLICATIONS 

We conclude this paper by listing several computational implications of the 
results in Section 2. 

TABLE III 

Results for Example 3 

K N Error Kh K3h2 

4.16 65 0.013 0.204 0.173 
6.24 119 0.013 0.166 0.172 
6.24 97 0.019 0.204 0.260 
8.32 129 0.025 0.204 0.347 
5.45 97 0.029 0.178 0.173 
5.55 97 0.045 0.181 0.183 
6.60 129 0.036 0.162 0.173 
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(a) Accuracy evaluations will have to account for the number of wavelengths 
in the computational domain. The number of points per wavelength will have to 
increase with the number of wavelengths to maintain accuracy. Thus, the effects of 
this theory would be expected to become more important as new numerical tech- 
niques and computer technology make the numerical solution to (1.1) feasible for a 
larger number of wavelengths. For the simple model problem (3.1) numerical 
experiments with a second-order finite difference code indicate that we wish to 
choose the number of points N in each direction to be N= 0.8(Kf)3’2 to achieve 
approximately a 7% L2 accuracy. 

(b) The precise relationship between K and h to maintain a fixed accuracy 
depends on both the order of the discretization scheme, the norm in which it is 
necessary to maintain the accuracy, and also possibly on the geometry and the 
boundary conditions. The advantages of using higher order methods are greater as 
the number of wavelengths increases. 

(c) Iterative methods for the solution of the linear systems of equations 
obtained by discretizing ( 1.1) are usually analyzed by studying the convergence rate 
for fixed K as h + 0. In practice, K and h are constrained by a given accuracy 
requirement and K increases over some interval. Thus, for a second-order method 
and accuracy determined by the L, norm of the error, these methods should be 
analyzed for K3h2 fixed (provided (2.5) is valid) and K increasing for the 
propagation models discussed in this paper. 

Note added in proof. We have observed numerically a growth rate of the form (1.2) with tl = $ for a 
Cartesian wave guide. Thus this estimate is sharp. 
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